The Approach to the High Bleeding Risk Patient

Tailoring Antithrombotic Therapy in HBR Patient

Dominick J. Angiolillo, MD, PhD
Professor of Medicine
Director - Cardiovascular Research
Program Director - Interventional Cardiology Fellowship
University of Florida College of Medicine - Jacksonville

Presenter Disclosure Information

Name: Dominick J Angiolillo

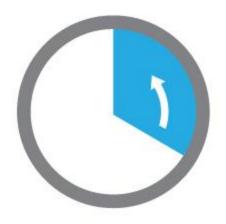
Within the past 12 months, the presenter or their spouse/partner have had a financial interest/arrangement or affiliation with the organization listed below.

Received payment as an individual for:

- a) Consulting fee or honorarium from Amgen, Aralez, AstraZeneca, Bayer, Biosensors, Boehringer Ingelheim, Bristol-Myers Squibb, Chiesi, Daiichi-Sankyo, Eli Lilly, Haemonetics, Janssen, Merck, PhaseBio, PLx Pharma, Pfizer, Sanofi, and The Medicines Company;
- b) Honorarium for participation in review activities (DSMB member) from CeloNova.
- c) Honorarium from the American Board of Internal Medicine (Interventional Cardiology Subspecialty Exam Writing Committee Member) and American College of Cardiology (Associate Editor JACC Cardiovasc Interventions)

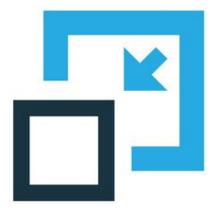
<u>Institutional payments for:</u>

- a) Grant support industry: from Amgen, AstraZeneca, Bayer, Biosensors, CeloNova, CSL Behring, Daiichi-Sankyo, Eisai, Eli-Lilly, Gilead, Idorsia, Janssen, Matsutani Chemical Industry Co., Merck, Novartis, Osprey Medical, and Renal Guard Solutions.
- b) Grant in gift: Spartan; Scott R. MacKenzie Foundation
- c) Federal agency: NIH



Facts about antithrombotic therapy & bleeding

- 1. All antithrombotic agents are associated with bleeding risk.
- 2. More potent antithrombotic therapies are associated with increased bleeding risk.
- 3. Prolonging the duration of more potent antithrombotic regimens is associated with increased bleeding risk.
- 4. Stacking on antithrombotic therapies (triple>dual>single) is associated with increased bleeding risk.


ONGOING DIRECTIONS IN TAILORING ANTITHROMBOTIC PHARMACOTHERAPY FOR HBR PATIENTS

STRATEGIES TO REDUCE THE RISK OF BLEEDING AFTER PCI

Shortening DAPT

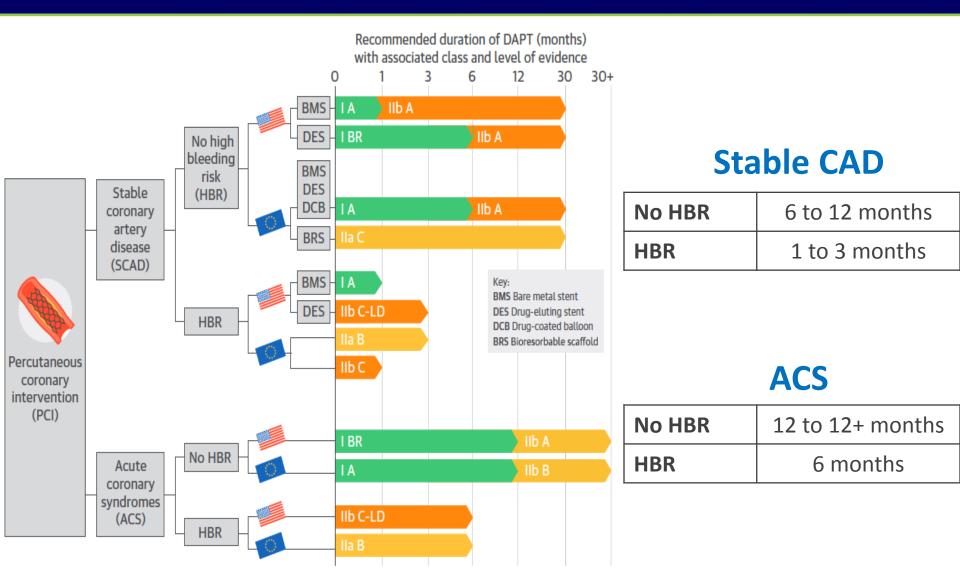
11 TRIALS OF SHORT VS. STANDARD DAPT

De-escalation

TOPIC TROPICAL ACS

AF + PCI

WOEST
PIONEER- AF-PCI
RE-DUAL PCI
AUGUSTUS ACC 2019
ENTRUST ESC 2019


GLOBAL LEADERS
GLASSY ACC 2019
SMART-CHOICE ACC 2019
STOPDAPT-2 ACC 2019
TWILIGHT

Bleeding Reduction Strategies Post-PCI: Definitions

Short DAPT duration

- Discontinuation of P2Y12 inhibitor sooner than guideline recommended minimum duration
- Stable CAD: <6 months (eg, 3 months)
- ACS: <12 months (eg, 6 months)
- Opportunity to further classify in "very" short (eg, 1 month for stable CAD and 3 months for ACS)

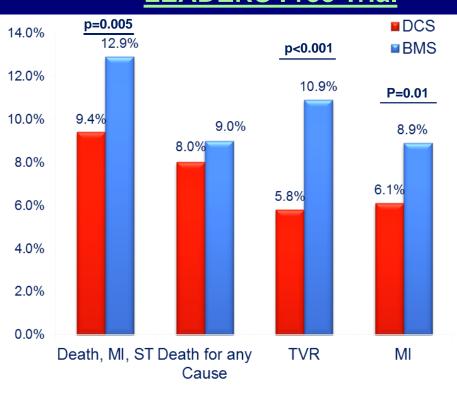
DAPT DURATION AFTER PCI: ACC/AHA vs ESC GUIDELINES

Studies of DAPT duration

ACC/AHA*	ESC*	Trial	Comparison (Months)	Design
PCI				
Yes	Yes	RESET (N $=$ 2,217)	3 vs. 12	Noninferiority
Yes	Yes	OPTIMIZE (N = 2,199)	3 vs. 12	Noninferiority
Yes	Yes	EXCELLENT (N $=$ 1,443)	6 vs. 12	Noninferiority
Yes	Yes	SECURITY (N = 1,399)	6 vs. 12	Noninferiority (halted)
Yes	Yes	ISAR-SAFE (N=4,000)	6 vs. 12	Noninferiority (halted)
No	No	$I\text{-LOVE-IT-2} \ (N=1,829)$	6 vs. 12	Noninferiority
No	No	IVUS-XPL (N = 1,400)	6 vs. 12	Noninferiority
No	No	OPTIMA-C (N = 1,368)	6 vs. 12	Noninferiority
No	No	NIPPON (N $=$ 2,772)	6 vs. 24	Noninferiority (halted)
Yes	Yes	PRODIGY (N = 1,970)	6 vs. 24	Superiority
Yes	Yes	ITALIC (N $=$ 1,822)	6 vs. 24	Noninferiority (halted)
Yes	Yes	ARCTIC (N $=$ 1,259)	12 vs. 18	Superiority
Yes	Yes	$DAPT \ (N=9.961)$	12 vs. 30	Superiority
Yes	Yes	$\label{eq:des-late} \text{DES-LATE (N} = 5,\!045)$	12 vs. 36	Superiority
Yes	No	OPTIDUAL (N = 1,385)	12 vs. 48	Superiority (halted)
ACS-PCI				
No	No	DAPT-STEMI (N = 870)	6 vs. 12	Noninferiority
No	No	REDUCE (N = 1,496)	3 vs. 12	Noninferiority
No	No	SMART-DATE (N $=$ 2,172)	6 vs. 12	Noninferiority

^{*}The availability status at the time of the ACC/AHA and ESC guidelines publication is indicated.

Risk Scores for DAPT Duration


Score	Number of variables	Development cohort (patients, design)	Setting	Predicted outcome(s)	Validation cohort(s) (patients, c- index)
DAPT	5 clinical, 3 procedural	N=11,648, multicentre randomized clinical trial	PCI patients on DAPT who were event-free for 12 months	Ischemia and bleeding between 12 and 30 months after PCI	N=8,136, 0.64 for both ischemia and bleeding
PARIS	Coronary thrombosis risk score: 6 clinical Major bleeding risk score: 6 clinical	N=4,190 patients, multicentre registry	PCI patients on DAPT	Ischemia and bleeding at 24 months after PCI	N=8,665, 0.65 for ischemia and 0.64 for bleeding
PRECISE-DAPT	5 clinical	N=14,963, pooled analysis of randomized clinical trials	PCI patients on DAPT	Bleeding at 12 months after PCI	N=8,595, 0.70 N=6,172, 0.66

Outcomes in HBR patients: 1-year follow-up

ZEUS Trial

35.0% p=0.03329.0% 30.0% **■**ZES p=ns ■BMS 25.0% 22.6% 20.0% 17.3% 15.8% p=0.005p = < 0.00115.0% 11.4% 10.4% 10.0% 5.9% 5.0% 3.5% 0.0% Death, MI, Death for any MI **TVR TVR** cause

LEADERS Free Trial

Ariotti S, et al. JACC Cardiovasc Interv. 2016 Mar 14;9(5):426-36

Urban P. Et al. N Engl J Med. 2015 Nov 19;373(21):2038-47

Ongoing trials in HBR patients with new generation DES

MASTER
DAPT
(Ultramaster,
Terumo)

ONYX ONE, ONYX
ONE CLEAR
(Resolute Onyx,
Medtronic

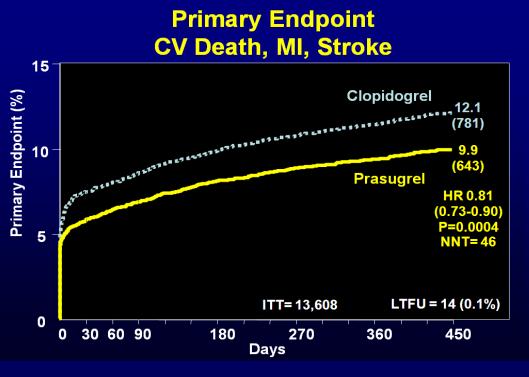
LEADERS
FREE II
(Biofreedom,
Biosensors)

Short DAPT
Programs
(Xience, Abbott)

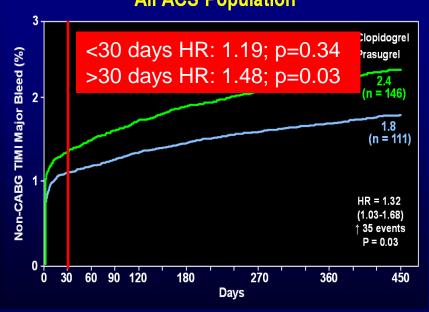
EVOLVE Short

DAPT
(SYNERGY,

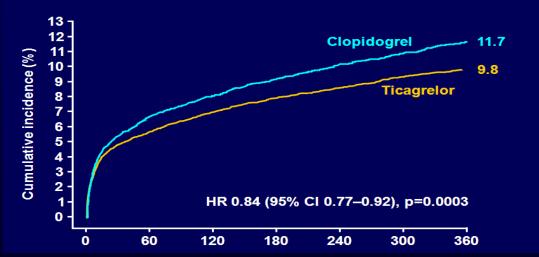
Boston

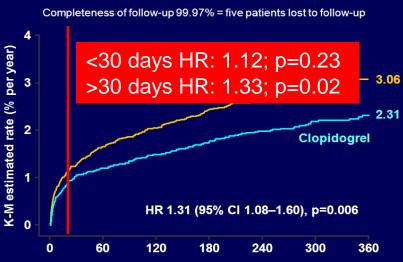

Scientific)

COBRA
REDUCE
(COBRA stent,
CELONOVA)

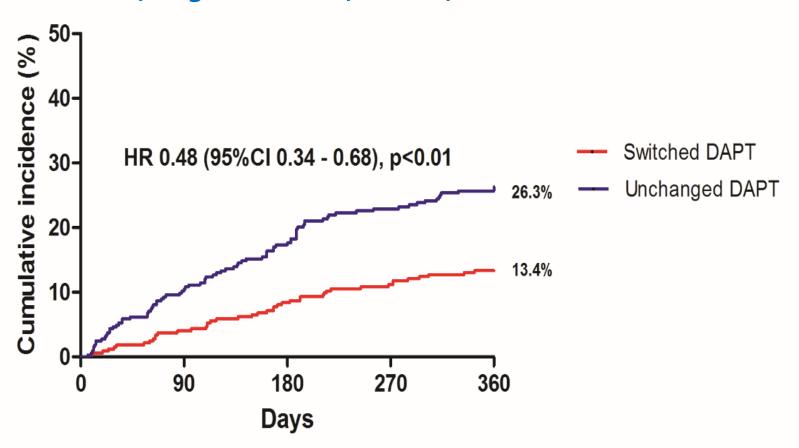

Bleeding reduction strategies: De-escalation

<u>De-escalation</u> (switching from prasugrel or ticagrelor to clopidogrel) as a strategy to reduce long-term bleeding events without a trade-off in ischemic protection




Non-CABG TIMI Major Bleed All ACS Population

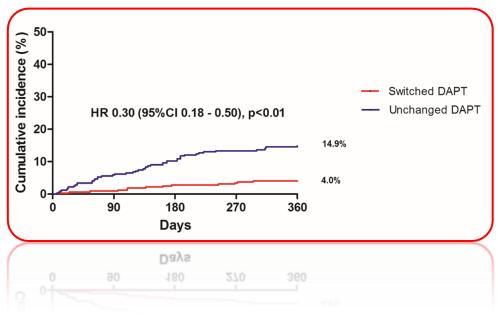
Time to non-procedure-related PLATO major bleeding

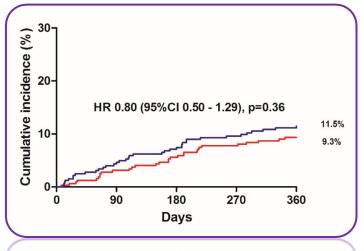


TOPIC Study

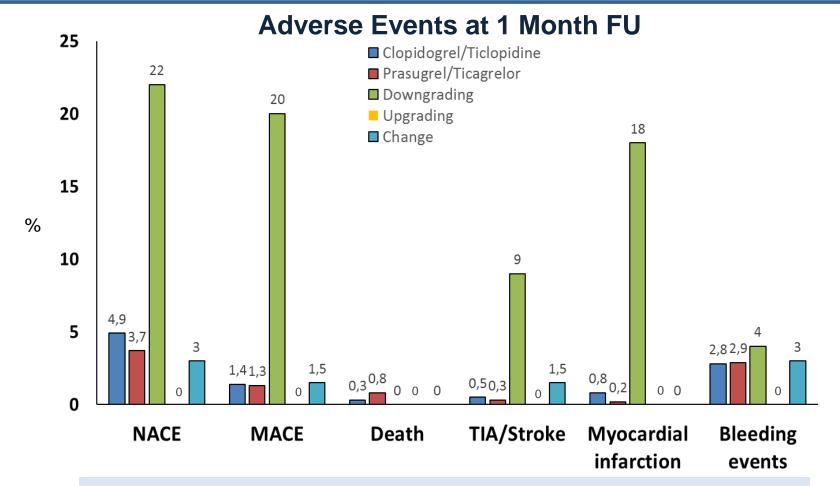
Primary Endpoint

Death, Urgent revasc., Stroke, BARC ≥ 2


Better Prognosis with switched DAPT


TOPIC Study

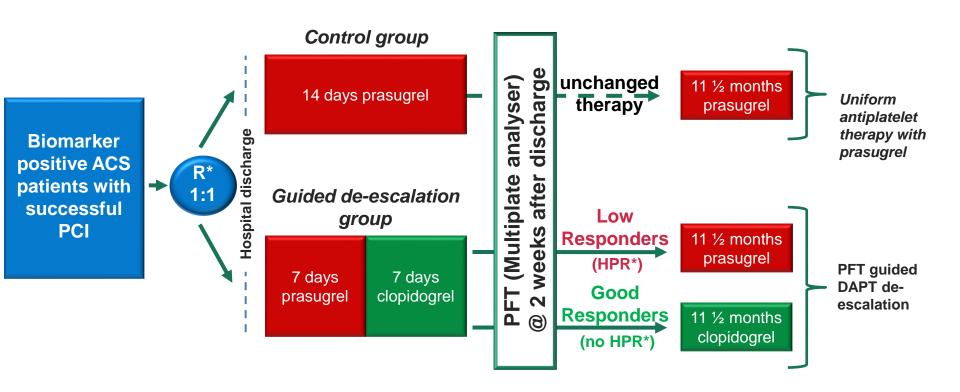
Any ischemic endpoint



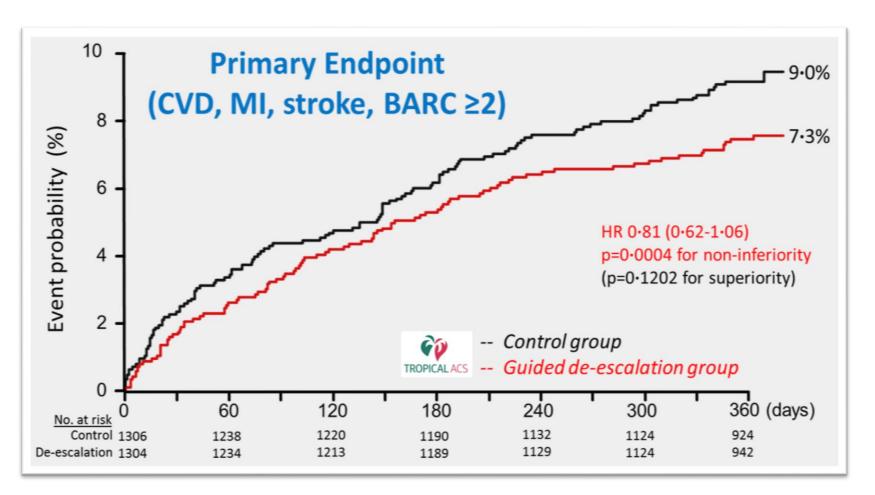
SCOPE (Switching from Clopidogrel to New Oral Antiplatelet Agents during PErcutaneous Coronary Intervention)

1363 ACS patients undergoing PCI enrolled during a 3-month period at 40 Italian medium-to-high volume centers

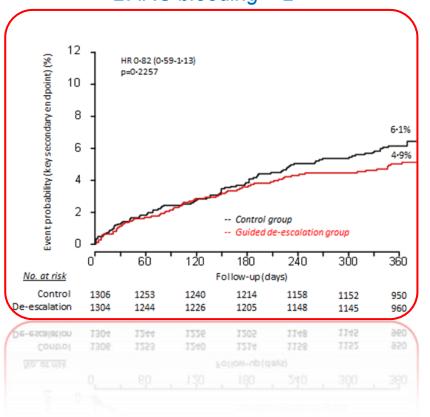
Should we routinely de-escalate P2Y12 Receptor Inhibitors?

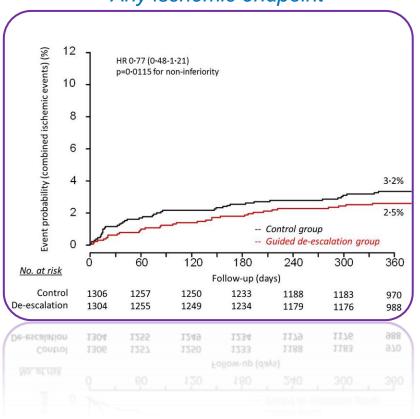

Probably not

- >Identify patients who can benefit from de-escalation
 - History of major bleeding
 - Patients with high bleeding risk (need for OAC, prior stroke, elderly)
 - Patients with low ischemic risk
 - Platelet function/genetic testing?
 - Need more investigations (currently ongoing)



Guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS)


Guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS)



Guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS)

Any ischemic endpoint

What is new in the 2018 Guidelines?

New recommendations

Double-kissing crush technique preferred over provisional T-stenting in true left main bifurcations

Cangrelor in PY₁₂-inhibitor naïve patients undergoing PCI

GP IIb/II Ia inhibitors for PCI in P2Y₁₂-inhibitor naïve patients with ACS undergoing PCI

Dabigatran 150-mg dose preferred over 110-mg dose when combined with single antiplatelet therapy after PCI

De-escalation of P2Y₁₂-inhibitor guided by platelet functon testing in ACS patients

Routine non-invasive imaging surveillance in high-risk patients 6 months after revascularization

Routine revascularization of non-IRA lesions in myocardial infarction with cardiogenic shock

Current generation BRS for clinical use outside clinical studies

Changes compared with the 2014 version of the Myocardial Revascularization Guidelines that were due to updates for consistency with other ESC Guidelines published since 2014 are not shown.

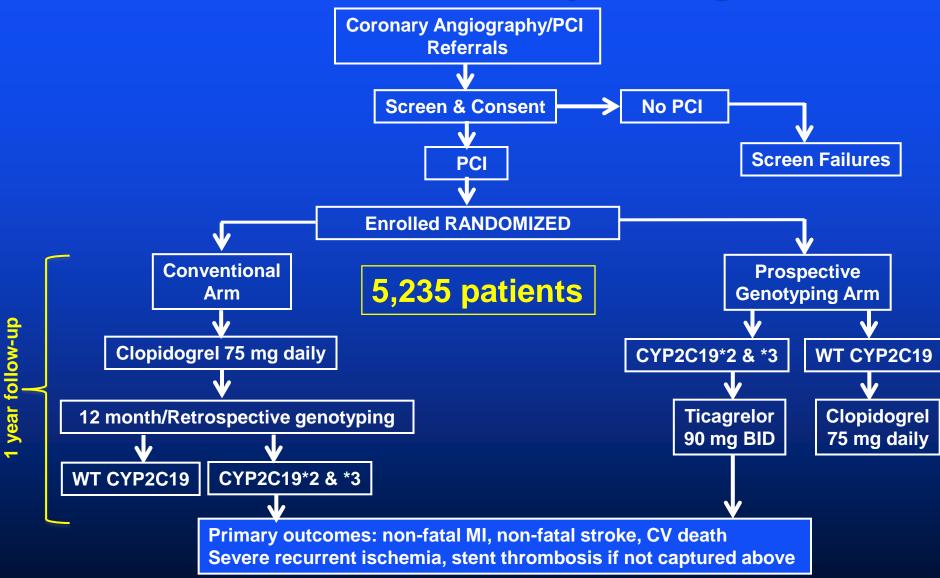
Class IIb

Class III


Limitations of PFT-guided de-escalation

- Availability of PFT
- Back and forth management of antiplatelet therapy
- Variability in PFT results

The RAPID Program: Spartan RX CYP2C19



- •Buccal Swab performed by nurses (no prior training in genetics) ½ hour course on machine
- •1 step insertion into machine
- •60 minutes to identify:
 - •CYP2C19*2 carrier status
 - •Heterozygous vs. Homozygous

TAILOR-PCI Study Design

ONGOING DIRECTIONS IN TAILORING ANTITHROMBOTIC PHARMACOTHERAPY FOR HBR PATIENTS

STRATEGIES TO REDUCE THE RISK OF BLEEDING AFTER PCI

11 TRIALS OF SHORT VS. STANDARD DAPT

De-escalation

TOPIC TROPICAL ACS

AF + PCI

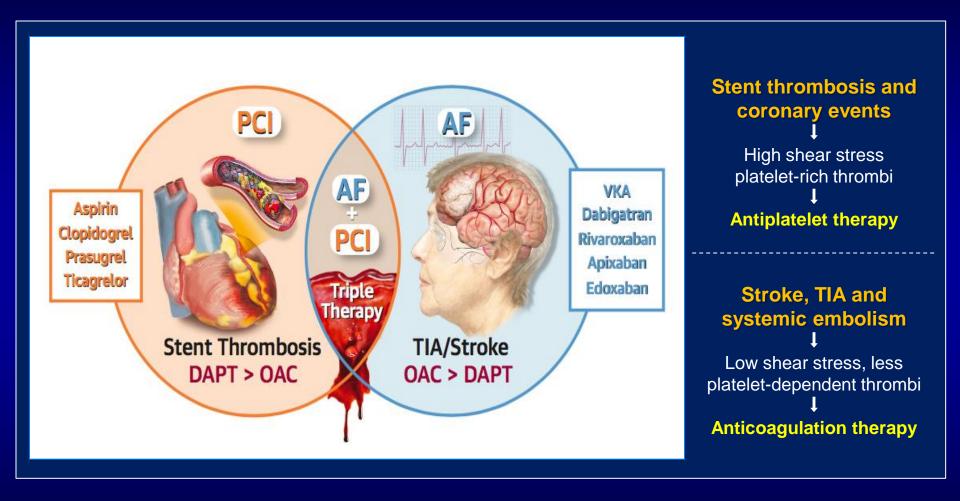
WOEST
PIONEER- AF-PCI
RE-DUAL PCI
AUGUSTUS ACC 2019
ENTRUST ESC 2019

Aspirin withdrawal

GLOBAL LEADERS
GLASSY ACC 2019
SMART-CHOICE ACC 2019
STOPDAPT-2 ACC 2019
TWILIGHT

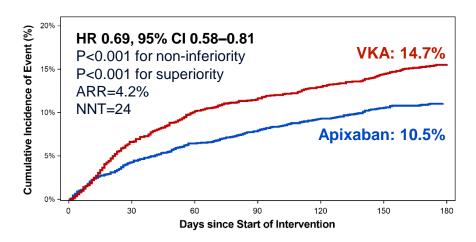
HIGH RISK PCI PATIENTS, N = 9000

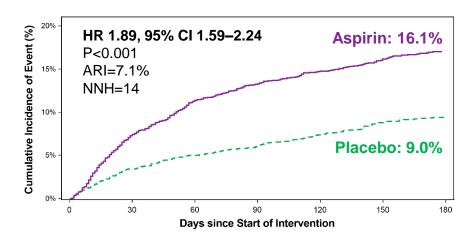
TWILIGHT Study Design


Multicenter, prospective, blinded dual-arm study

TICAGRELOR + ASA	TICAGRELOR + ASA	SOC THERAPY
RANDOMIZE	N = 8200 RANDOMIZATION PERIOD ENDS	OBSERVATION PERIOD STARTS
TICAGRELOR + ASA	TICAGRELOR + Placebo	SOC THERAPY
3 MONTHS	12 MONTHS	3 MONTHS
Short course DAPT to minimize tent-related thrombotic events	Monotherapy with potent platelet inhibitor provides ischemic protection while reducing ASA related bleeding	Observational period

Atrial Fibrillation and PCI: Key Concepts


Meta-analysis of RCT of aspirin withdrawal in AF+PCI


Safety: Major & Minor Bleeding


dy name		Statistics for each study			Bleeding / Total			Odds ratio and 95% CI			% CI	
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	Dual	Triple					
OEST	0.301	0.206	0.439	-6.223	0.000	54 / 279	126 / 284		-	F		
PIONEER AF	0.589	0.451	0.771	-3.861	0.000	109 / 696	167 / 697					
REDUAL PCI	0.576	0.477	0.694	-5.772	0.000	305 / 1744	264 / 981					
	0.483	0.341	0.684	-4.106	0.000					◆		
								0.01	0.1	1	10	100

Efficacy: Major Adverse Cardiovascular Events

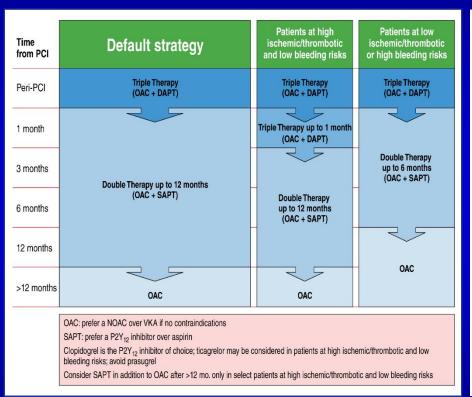
Study name	Statistics for each study		MACE / Total				Odds ratio and 95% CI						
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	Dual	Triple						Relative weight
WOEST	0.585	0.361	0.948	-2.179	0.029	31 / 279	50 / 284						26.95
PIONEER AF	1.149	0.725	1.822	0.592	0.554	41 / 694	36 / 695			-			28.24
REDUAL PCI	1.030	0.819	1.296	0.256	0.798	239 / 1744	131 / 981						44.81
	0.912	0.643	1.293	-0.515	0.606					•			
								0.01	0.1	1	10	100	

VKA + Aspirin: 18.7%

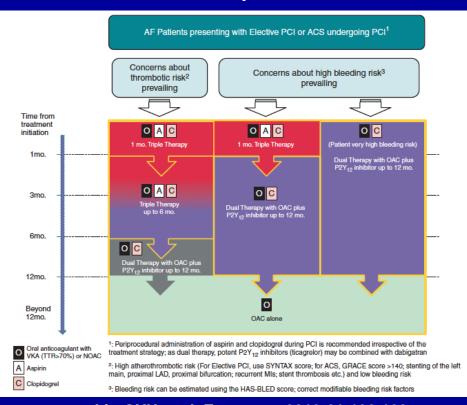
Apixaban + Aspirin: 13.8%

VKA + Placebo: 10.9%

Apixaban + Placebo: 7.3%


Apixaban + Placebo vs. VKA + Aspirin: ARR=11.4% (NNT=9)

Major / CRNM Bleeding


ARR: absolute risk reduction NNT: number needed to treat ARI: absolute risk increase NNH: number needed to harm

Management of antithrombotic therapy in AF patients with ACS and/or undergoing PCI

North American Expert Consensus

EHRA/ESC Expert Consensus

Angiolillo DJ et al. Circulation 2018; 138:527–536.

Lip GYH et al. Europace. 2019;21:192-193.

Post PCI Optimal DAPT in HBR Patients

- No single DAPT recommendation applies to every patient.
- Short DAPT duration should be considered in HBR patients
 - Stable CAD: <6 months (eg, 3 months)
 - ACS: <12 months (eg, 6 months)
 - Opportunity to further classify in "very" short (eg, 1 month for stable CAD and 3 months for ACS).
- Although risk scores may help guide decision making, the fine details of DAPT duration must be defined by clinicians for each patient on an individual basis taking into consideration patient preference.
- ▶ In patients requiring OAC, current data suggesting dropping aspirin by time of hospital discharge. In these patients a NOAC should be preferred over VKA and clopidogrel should be the P2Y12 inhibitor of choice.
- De-escalation can be considered after early acute phase (>30 days) if patients also deemed to be at low ischemic risk and/or patients known to have good response to clopidogrel.